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Overview

4-years of AIRS CO»
@ Motivation

o RTA validation
@ AIRS climate monitoring
@ CO; transport; help understand sinks?

@ Kernel function centered around 550 mbar

Ocean/Night only clear FOVs; Good for validation, bad for
sources/sinks and/or transport

ECMWF used for temperature

SST and TCW from AIRS (UMBC values)

Validated via NOAA CMDL MBL, JAL, 2 ocean aircraft sites
GOAL: provide useful data for modelers

OCO will need AIRS mid-tropospheric CO»



Mid-tropospheric CO- is Important!
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Measurements of midday vertical atmospheric CO, distributions reveal annual-mean vertical CO
gradients that are inconsistent with atmospheric models that estimate a large transfer of terrestrial
carbon from tropical to northern latitudes. The three models that most closely reproduce the

observed annual-mean vertical CO, gradients estimate weaker northern uptake of ~1.5 petagrams

of carbon per year (Pg C year ) and weaker tropical emission of +0.1 Pg C year
2.4 and +1.8 Pg C year

with previous consensus estimates of

compared

3, respectively. This suggests

that northern terrestrial uptake of industrial CO, emissions plays a smaller role than previously
thought and that, after subtracting land-use emissions, tropical ecosystems may currently be

strong sinks for CO,
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estimated the northern mic-latitudes to be a sink
of approximately 2 to 3.5 Pg C year ' (2.5)
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pheric oxygen () measuements have furhr
indicated that most of this northern sink must
ide on land. Tropical fluxes are not well con-
strained by the atmospheric observing network,
but global mass-balance requirements have led to
estimates of strong (1 to 2 Pg C year ') tropical
carbon sources (4, 5). Attribution of the Norths
Hemisphere terresirial carbon sink ($-/3) and
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distrbution of CO in the atmosphere that pro-
vide new constraints on the latitudinal distribu-
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‘compare them with predictions of global models
have been limited. Figure | shows average ver-
tical profiles of atmospheric CO, derived from
flask samples collected from aircraft during mid-
day at 12 global locations (fig. S1), with records
extending over periods fiom 4 to 27 years (table.
S1 and fig. 52) (25). These seasonal and annual-
‘mean profiles reflect the combined influences of
surface fluxes and atmospheric mixing. During
the summer in the Northern Hemisphere, midday
atmospheric CO; concentrations aregenerally.
lower near the surface than in the fiee tropo-
sphere, reflecting the greater impact of terrsirial
al emissions at this

downwind of continents show larger gradients
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response tostronger land-based fluxes, and higher-
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high altitude. Conversely, during the winter

piraion and ose el sourees fad 1 clevaed
low-altitude atmospheric CO; concentrations at
norther locations. The gradients are comparable.
in magnitude in both seasons, but the positive
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Data Used is Similar to Ours: (Once land is
added)
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Fig. 1. Midday vertical CO, profiles measured at 12 global locations based on fits to samples binned by
altitude and averaged over different seasonal intervals. Northern Hemisphere sites include Briggsdale,
Colorado, United States (CAR); Estevan Point, British Columbia, Canada (ESP); Molokai Island, Hawaii,
United States (HAA); Harvard Forest, Massachusetts, United States (HFM); Park Falls, Wisconsin, United
States (LEF); Poker Flat, Alaska, United States (PFA); Orleans, France (ORL); Sendai/Fukuoka, Japan (SEN);
Surgut, Russia (SUR); and Zotino, Russia (ZOT). Southern Hemisphere sites include Rarotonga, Cook
Islands (RTA) and Bass Strait/Cape Grim, Australia (AIA). Profiles are averaged over Northern Hemisphere
summer (A), all months (B), and Northern Hemisphere winter (C). A smoothed deseasonalized record from
Mauna Loa has been subtracted from the observations at each site. Black lines in each panel represent
Northern Hemisphere average profiles (center) and uncertainties (width) for the same times (25). The
horizontal axis in (B) is zoomed by a factor of 2 relative to those in (A) and (C).



Methodology

Use ECMWF T (z), mean tied to radiosondes. Fit for SST
and TCW using 2616 and 2609 cm™2 channels (night only).

@ Solve

B; B;
dB 3CO, + LeSTS

BTPS — BT (ECMWF) =
: i ) dCO, dT

for 8CO5 using 2+ channels.

@ LW: Two channels, 791.7 cm™?! used for CO, and Ts; 790.3
cm™t used for Ts only. Temperature insensitive.

@ SW: 2392-2420 cm™; Temperature sensitive, 26 channels,
diagnose ECMWF errors ( [Ilppm jump on Feb. 2006)

@ CO3 zonally averaged into 4 degree latitude bins

@ Main di Cerknce between this work, and previous work:
Lower peaking kernel functions.



This Work: 791 cm~! Channel dR/d(CO.)

Peaks Closer to Surface
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Finding “Clean” CO, Channels
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Ratio of dBT /dco, to dBT /dTprofile

Why 791.7 cm™! Channel
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Raw Biases, Northern Hemisphere Average




AIRS Calibrated (1-number, 1-time) Using MLO

MLO at [690 mbar, close to peak of CO> W.F.
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AIRS 4-Year CO, Climatology
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JAL Comparisons

2006

2005

2004

2003

Time

2006

2005

2004

2003

Time

3
3
3

8
3

S
8
3

©
R

5
(wdd

© ¥
SN
S ®

) %00

372

368

8 2 g
3 S

3
(wdd) %00

2006

2005

2004

2003

2006

2005

2004

2003

Time

Time




(wdd) 00

8 8
i 5
8 8
S m 5
: m :
= 5
S g g
] « 8
=
©
—l
g g
w0
Yo} 8
1 © ©
8 8
Z ) )
i 2 2
m 4 5
o) E g
=
©
o g g
m « «
S
<
-



Validation of AIRS with MBL, JAL etc.

Detrended 002 (ppm)
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Validation of AIRS with Models

TRANSCOM Biosphere Models
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AIRS CO, vs NOAA/CMDL MBL

Top: MBL, Middle: AIRS, Bottom: AIRS-MBL
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Example Model Simulations

Y. Niwa, University of Tokyo

Evaluation of meridional transport
comparison with TransCom 3 models @

tracer : fossil fuel 1990 TransCom 3 models
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AIRS Seasonal Amplitude vs MBL/JAL/etc.
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AIRS vs MBL Min/Max Amplitudes
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AIRS Seasonal Phase vs MBL

Latitude



AIRS vs MBL/MLO CO, Growth Rates
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AIRS vs MBL Growth Rates: O [sélts and
Harmonic Terms Removed
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Rate Variability 20-40 Deg.lat; AIRS=2.44, MBL=1.92 ppm/yr
Blue Bars: AIRS=1.86, MBL=2.07 ppm/yr;
Red Bars: AIRS=2.56, MBL=2.88 ppm/yr
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1st Look: IASI vs AIRS CO»

(Note: Using constant dBT/dCO,)
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CO, Conclusions

@ Excellent results using very clear FOVs over ocean
@ Initial work shows similar results with cloud-cleared data,
allowing more convective situations to be examined for

transport

@ Basic technique should work over land, first clear, then
cloud-cleared data.

@ This work sets a baseline on capability of AIRS, esp. with
regard to trends.




